

Technological Feasibility Analysis

9 November 2018

Team Jasper
Jabulani School Simulation Portal

 Sponsor: ​​ Dr. Gretchen McAllister

Mentor: Ana Paula Chaves Steinmacher

 Team: Karsten Nguyen

Carli Martinez
Ruben Rincon

 Jasmine Mitchell

Table of Contents

Technological Feasibility: Content ……………………………………….... 2
Technological Feasibility: Scope ………………………………..……….... 3
Technological Challenges …………………………………………..…….... 4
Technological Analysis ..…………………………………….……...…….... 5

Back-End Development​……………………………….………………..… 5
Front-End Development.​……………………….…………………………. 9
Web Hosting.​……………………………………………...……………... 14

Technology Integration ……………………………....……………………… 17
Conclusion ………………………………………………………….………... 18

1

Technological Feasibility: Content

Introduction

With today’s ever increasing diverse population, there is now a new inquiry into how
instructors can embrace the diversity of their student body — whether it is between a
traditional face-to-face class, or one that is taught online. Current research suggests
that diversity in a traditional classroom is a powerful asset, providing that the instructor
is sensitive to individual students’ backgrounds. However, it can prove difficult to deal
with the diversity gap between students and teachers. To allow these teachers to
engage with their students respectfully, teachers must know their students and their
academic abilities individually in order to be able to respond in a culturally, socially, and
linguistically appropriate manner. The best approach for teachers to obtain knowledge
for handling specific diversity-related circumstances is by connecting to the experience
on a personal and professional level of students with various backgrounds.

Our sponsor, Gretchen McAllister, is a Professor of Education at NAU. While teaching
abroad in South America, she contemplated the idea of developing a school simulation
portal that could amplify and fully encompass diversity sensitivity in an academic
setting. This portal, appropriately named “Jabulani” — the siSwati (Kingdom of
Swaziland) word for happiness, is to made to lay the foundation for the future of
diversity training in academia. McAllister’s idea of the portal ​is to highlight a few of the
key challenges and concerns regarding diversity, and illustrate ways to gain an
understanding of diversity in the classroom and beyond. So far, McAllister has
accumulated 600 virtual student profiles in an Excel sheet, expanding many different
diverse backgrounds. Along with these students profiles, she has also developed
scenarios where these “teachers in training” will be able to interact with multiple
diversity situations and address them accordingly. The concept of the portal is to allow
both faculty and students to log in to the portal; faculty members can drag and drop
from the online virtual database to create their own virtual classroom and assign
scenarios and exercises to the students accordingly.

To address these challenges, we have been working on developing a virtual training
space called “The Jabulani School Simulation Portal”. This portal will allow teachers in
training to access ​potential classroom scenarios and allow them to address the
scenarios in the most appropriate manner. The solutions to such scenarios will be
reviewed by the admin or instructor, since these responses are never as simple as
“right” or “wrong”.​ To enable this portal we are going to create a web application where
faculty members and students can login to access this virtual classroom. Faculty

2

members will be able to deploy a virtual classroom to further expand the student's
academic experience. One of our tasks is to convert the 600 virtual student profiles
excel spreadsheet into a online database where the faculty members can filter out or
drag and drop virtual students into their own customizable virtual classroom. Along with
their customized classroom, faculty members will be able to assign exercises and
scenarios to them. From there, students will be able to login and interact with their
assigned virtual classroom. As of now, Dr. McAllister resorts to using Google Classroom
with the collected data to create simplified diversity scenarios/assignments. Our goal is
to design a system that allows educational faculty to create and deploy individually
customized classroom simulations, which are then used as the basis for a series of
training exercises that allow education majors to gain hands-on experience with
diversity issues they will typically face in a diverse classroom.

Our portal will be similar to that of Bblearn when it comes to authentication and system
initialization. Students and faculty will be able to log in to the portal with their credentials
and will be granted separate privileges. Faculty will have admin controls, where they
can set up their virtual classrooms and teachers-in-practice will be able to self-enroll in
one. From there, faculty will have the privilege of grading their exercises and enable
them to advance.

This document ​will assess the details of how we intend to deliver our product as well as
analyze what is technologically feasible given our scope. Our technological feasibility
will be useful to organize the information properly and highlight proposed technology.

Technological Feasibility: Scope
Some of the technological feasible major design aspects that we envision include:

● Programming and scripting languages
● Database technologies
● Hosting
● User Authentication

For this project, given the many tools and resources we plan to use, we will effectively
start ‘from scratch’ but we will not reinvent the wheel. We will make the most out of our
languages and tools so we will only spend time developing what is custom to our
requirements. For example, for styling, we may use a CSS framework, such as a
Bootswatch, that will automatically style our web pages, but we will also use custom
CSS stylesheets in cases where we need specific items styled per request of the client.
We believe that with this approach, it will be easiest for our team to grasp a solid
understanding of our project code since its inception began with us.

3

Technological Challenges

The technological challenges of our project fall under three categories, front-end
development, back-end development, and hosting. This web application will need an
attractive and well-designed interface, a robust and functional back-end complete with a
modular database, as well as a web host that will handle the application’s needs as well
as the client’s.

Front-End Development

The goal of our front-end technology is to provide a user-interface that is both user
friendly and accessible for users with disabilities. In addition, our front-end must display
a virtual classroom along with its functionality. Administrators must be able to drag and
drop student profiles into a virtual classroom from a given database. When the
classroom has been created, admins will be able to assign exercises and scenarios
related to the virtual classrooms. The teachers in practice will be able enroll in these
virtual classrooms, and work on the assigned scenarios and exercise. After they have
worked through a given amount of exercises, they will have to wait for their input to be
reviewed by the admin. Once they have been approved by the administrator, they can
continue to progress through the virtual classroom. All of the profile data used to create
the scenarios should be able to be extracted from the database by the administrator.
This issue also presents UX and UI challenges, and must be easy for non-technical
users to quickly grasp and understand.

Back-End Development

To develop our web application, we must select a back-end language that is capable of
meeting the current and future needs of the client. Ideally, it would be easy to learn and
work with for our team to develop in, have a lot of resources and a large community
around it, and be flexible.

Faculty must be able to access a database that will be used to handpick a classroom for
the teachers in practice. Using database technology, teachers in practice must also be
able to enroll in one and only one classroom given by faculty. CRUD (Create, read,
update, and delete) functionality will need to be performed on database values. The
admin will also be able to have a search filter option where that helps the user select a
subset from the database. Faculty must also be able to add exercises to the webapp.

4

The webapp will need user authentication and a secure interaction. Faculty must be
able to restrict/allow access to profile data based on scenario completion. Teachers in
practice must be able to interact with each virtual student as a clickable link. The
scenarios will need to have sharing capability among a community.

The provided excel sheet containing student profiles incorporated in the previous
iteration of Jabulani will need to be extracted into the online database. This is so the
data can be utilized by the database and manipulated by the user. This will be a
one-time process and profiles included later will need to be added to the system
internally.

Hosting

Our final challenge is to find suitable hosting for our web portal. We we will need to find
somewhere to host the web application that will be compatible with our chosen web
framework as well as our chosen database. The host must also provide quality
performance with little to no deterioration in speed when many people are using the
webapp simultaneously and performing many tasks. This will require a host with a
notably decent bandwidth. In addition, the host must be free yet provide the
aforementioned features.

Technology Analysis
A back-end language/framework must be one that is easy to work with and learn, and
be capable of meeting project requirements. For this analysis, we chose three of some
of the most popular technologies for web applications.

Back-End Functionality and Language

Alternatives

Ruby on Rails:

Ruby on Rails is a popular framework for building web applications that one of our team
members has had success using in the past. ​Ruby on Rails, or Rails, is a server-side
web application framework written in Ruby under the MIT License. Rails is a
model–view–controller framework, providing default structures for a database, a web
service, and web pages

5

PHP:

PHP is a general-purpose scripting language that is especially suited to server-side web
development, in which case PHP generally runs on a web server. Any PHP code in a
requested file is executed by the PHP runtime, usually to create dynamic web page
content or dynamic images used on websites or elsewhere.

ASP.NET:

ASP.NET is an open-source server-side web application framework designed for web
development to produce dynamic web pages. It was developed by Microsoft to allow
programmers to build dynamic web sites, web applications and web services

Chosen Approach

The chart below will establish a fundamental comparison between the three back-end
frameworks/languages, Ruby on Rails, PHP, and ASP.NET.

1 = Poor
3 = Best

Ruby on Rails

PHP/

ASP.NET

Overview A web-application
framework that
“​includes
everything needed
to create database
-backed web
applications” (3)

A popular scripting
language designed
for web
development with a
long history and
large community
around it. (3)

A web application
framework
developed by
Microsoft to allow
users to build
dynamic sites. (2)

Learning A team member is
experienced and
comfortable in
development with
this language. (3)

A team member is
experienced and
comfortable in
development with
this language.(3)

A team member is
experienced in
development with
this language.(2)

Speed Medium (2) Medium (2) Fast (3)

Availability of
Resources and
Information

Medium (2) High (3) Medium (2)

6

Set up and
development time

Fast (3) Medium (2) Slow (1)

Availability of
testing frameworks

Many (3) Some (2) Few (1)

TOTALS: 16/18 15/18 11/18

For a back-end language, we have chosen Ruby on Rails due to our team’s
comfortability with it, its growing popularity, and ease of use. It is also compatible with a
large amount of frameworks and libraries to use alongside it, including many testing
framework options for test driven and behavior driven development.

Testing

We installed the latest version of Ruby on Rails and scaffolded a starter project. We ran
it on a local server following the completion of tutorials we found online.

Back-End Functionality and Modular Database

Alternatives

Azure SQL:

Microsoft Azure SQL Database is a managed cloud database provided as part of
Microsoft Azure. A cloud database is a database that runs on a cloud computing
platform, and access to it is provided as a service. Managed database services take
care of scalability, backup, and high availability of the database

PostgreSQL:

PostgreSQL is a general purpose and object-relational database management system,
the most advanced open source database system. PostgreSQL was designed to run on
UNIX-like platforms. However, PostgreSQL was then also designed to be portable so
that it could run on various platforms such as Mac OS X, Solaris, and
Windows.PostgreSQL is free and open source software. PostgreSQL requires very
minimum maintained efforts because of its stability. Therefore, if you develop

7

applications based on PostgreSQL, the total cost of ownership is low in comparison with
other database management systems.

Chosen Approach
The chart below will establish a fundamental comparison between the two database
technologies, Azure SQL and PostgreSQL.
1 = Poor
3 = Best

Azure SQL

PostgreSQL

Overview Microsoft Azure SQL
Database is Microsoft’s cloud
computing database platform.
Rather than creating a whole
database, access to it is
provided as a paid service
from Microsoft. (1)

PostgreSQL is a general
purpose and
object-relational database
management system, and
like Ruby on Rails, it is
open source. It is portable,
and can run on various
platforms. It is is free and
has been used with Ruby
on Rails in that past by one
of our team members. (3)

Perceived Learning
Curve

Potentially large and
time-consuming learning
curve. (1)

Easy to implement with
Ruby on Rails with tutorials
available. ​Successfully
used in other projects​. (3)

Cost Is not free. (1) Free. (3)

Database Compatibility It is compatible with our
language, but not our hosting
platform. (2)

It is compatible with our
language, and our hosting
platform. (3)

Performance Depending on the network
environment, we may not be
able to connect or we may
lose the connection if the
SQL Database server doesn't
allow traffic from our client IP
address. (2)

Writing in test-data must
be done via the command
line until the forms are set
up in the application. (2)

8

TOTALS: 7/15 14/15

For our database, we chose PostgreSQL due to its compatibility with both Ruby on
Rails and its modularity. We will import the Excel dataset in through the command line
into a PostgreSQL database. The database will then be controlled through Ruby on
Rails’ Active Record, which generates SQL commands from written ‘plain english’
directives, stores development history, and has a database schema that is viewable
right in the project files for easy access. It is quicker than writing SQL commands, it has
been used in the past successfully by one of our team members, and is easy to get
started with.

Testing

We installed PostgreSQL and consequently followed tutorials describing how to connect
the two Previous similar projects that use these two together were used as a reference.
To test it is working, we used Active Record to interact with the PostgreSQL database
by running initial migrations and commands to begin with a simple ‘user’ table.

Front-End Functionality and Virtual Classroom

The front-end functionality of the web application must support accessibility for various
forms of disability. It must be suit our needs by having helpful documentation, being
compatible with common web browsers, being familiar among team members, and
providing compatibility with our chosen server-side language, Ruby on Rails. Since the
project’s UI/UX will be improved upon and maintained in the future by others, it is also a
central goal for the team to produce clean and attractive code to read. Fulfilling these
requirements will allow us to best support our clients goals and vision of the virtual
classroom.

Alternatives

HTML, CSS, & JavaScript:

Often referred to as a “triad of cornerstone technologies for the World Wide Web”,
HTML, CSS, and JavaScript work together to produce the bare-bones of many websites

9

and applications used today. HTML is able to provide structure to a website while CSS
enhances this stylistically. JavaScript operates on the client side to enhance user
experience (UX).

Everything else:

Haml (HTML Abstraction Markup Language) is a templating system that is built upon
HTML and lets the programmer write more human-readable code. This yields cleaner
and easier to read code since it has been abstracted for that purpose. SASS is a
superset of CSS that is based on JavaScript meant for creating a clean and appealing
user-interface.

Chosen Approach
The chart below will establish a fundamental comparison between the two front-end
development languages, HTML/CSS/JavaScript and Everything else.

1 = Poor
3 = Best

HTML, CSS, & JavaScript Everything else

Overview The most popular and
fundamental technologies
of the web (3)

Very unpopular and
potentially outdated web
technologies, difficult to
find as a reputable
competitor to HTML, CSS
& JS - almost nonexistent
(1)

Has thousands of tutorials
and resources

Yes (3) Few (1)

Compatibility with web
browsers

Compatible with many web
browsers, and many
versions ​ (3)

Not compatible (1)

Team familiarity and
experience using before

Very familiar and
experienced with (3)

Unfamiliar with (1)

10

Compatibility with our
chosen server-side
language, Ruby on Rails

Compatible (3) The CSS alternative,
SASS is compatible with
Ruby on Rails, however, it
is build upon CSS. Other
alternatives provide
unknown compatibility (1)

TOTALS: 15/15 5/15

Based on this ranking system, will use HTML for defining the logical structure of a web
page; CSS for specifying the appearance of each element on a web page; JavaScript,
the programming language that brings web pages to life; The HTML5 canvas element,
which provides a space on a page where your code can draw using JavaScript
instructions; and HTML input controls such as buttons and sliders for user interactivity.

We will also utilize JavaScript for the fact that it is currently being used by more than 94
percent of all the websites. JavaScript is useful because it is able to be a front-end
programming language which helps web developers in ​Web Application Development
and makes dynamic and interactive web pages by implementing custom client-side
scripts.

Due to our client’s plans to introduce a team to the project to take over the styling of it
next year, we believe HTML, CSS and JavaScript will fit perfectly to meet our
requirement to produce a project with simple and basic styling and appearance that can
be built upon in the future.

Testing

These front-end languages have built-in compatibility with our Ruby on Rails project. To
test them, we wrote a simple view in HTML with a starter stylesheet and JavaScript and
ran it on a local server to view and make sure they are operating correctly. Ruby on
Rails also has views that we can generate from the command line during scaffolding;
we decided to try that as well to test proper functionality of our chosen front-end
languages.

11

https://www.xicom.biz/offerings/web-development/

User Authentication

This project requires the ability for users and administrators to securely create an
account on the JASS system, log in, be able to set and reset their password, and have
their password safely stored. They will also be able to manage their account, updating
their username, password, and any other information related to their account. This
presents a large security challenge, especially on a public software that is hosted
online. This also must mirror previous user authentication systems that many of our
users have seen before, to minimize any confusion.

Alternatives

“Devise” Ruby Gem:

Compared to other ruby gems like authlogic, Devise is the most-popular and
well-established, and also has the most support for it. A team member also has
experience using it successfully and is knowledgeable in how it works, and that it can
meet the requirements.

Hard Coding:

An alternative to using a gem like Devise, if we find the gem to be too constricting to
build out the complex requirements we must implement, is to create our own user
authentication, carefully coding the password hash algorithms and all related functions.
This may prove to be difficult and time consuming compared to Devise or other gems,
and it may also cause security vulnerabilities if we do not successfully encode and
decode the password hash properly. There is, however, plenty of support and resources
we can utilize if we end up needing to go this route.

Chosen Approach
The chart below will establish a fundamental comparison between the two user
authentication possibility, Hard Coding and Devise.
1 = Poor
3 = Best

Hard Coding Devise

Strong adherence to For both front-end to
back-end connections and

Contains a lot of different
configuration options.

12

standards

default account settings,
alternate decisions must
be made at design time.
On many systems, a
default administration
account exists which is set
to a simple default
password which is
hard-coded into the
program or device. ​ (3)

Devise views directly into
your application folder. A
new folder called ​devise
will be created inside the
views​ directory (3)

Large and active
community

Most companies use third
party application to create
authentication protocols.
There is still a large
community who hard code
SQL and PHP
authentication (3)

53 companies on
StackShare use Devise.
Devise has a large and
active community. (3)

Great amount of helpful
tools and libraries

There aren’t many tools to
use when coding login and
authentication. You are
also limited in libraries (1)

There are hundreds of
different helpful
community-created “gems”
and libraries that you can
use as a part of your own
software.​(3)

Performance time

The boot time of the
framework is quite long,
especially when you work
with a massive project (2)

Devise is designed to
handle large amounts of
data from the ground up.
Compiled mapping
reduces time/space at run
time (3)

Security If hard-coded password
encryptions are used, it is
almost certain that
malicious users will gain
access through the
account in question. (1)

Third-party plugins and
gems are great for
extending a website in a
quick and efficient manner.
Sometimes security
requirements require a

13

more robust solution than
what Devise provides
out-of-the-box. (2)

TOTALS: 8/15 14/15

Since we are using Ruby on Rails, we will explore the many ruby gems available to us
that are popular, with a proven and tested codeset, and is up-to-date with fewest bugs.
One gem that a team member is familiar with is Devise, and it has met all of these
requirements. Upon identification of a gem we will use, we will add it to our Gemfile and
follow instructions and documentation to implement all of our project requirements with
it.

Testing

After familiarizing ourselves with the tutorials of Devise, we will install the gem into our
starter Ruby on Rails project and follow steps to get started. We will test it by going into
our portal and writing in sample accounts and signing in and out of them, as well as
forgetting passwords and following steps to get a new password. If necessary, we will
also use other similar projects that use Devise as a reference to help us understand
what successful implementations of it should look like.

Web Application Hosting

Hosting our application on the web must be done by a service that is capable of meeting
our needs, is easy to work with, and has agreeable prices. It should preferably have
decent support for our chosen frameworks and databases along with reliable bandwidth
speeds. Most of these issues can be solved with a reliable host.

Alternatives

Heroku:

Heroku is a cloud “platform-as-a-service” that allows for web hosting. A free account
provides a small 512MB of RAM for performance needs. Heroku mainly supports
PostgreSQL databases and it is complicated to overcome that limitation. Workarounds

14

for PostgreSQL on Heroku do exist but we’d be unlikely to use them as one of our team
members is experienced using PostgreSQL databases. Heroku has good support for a
variety of frameworks such as Node.js and Ruby.

NAU-provided Server Hosting:

NAU is already able to provide some of its server resources and web-hosting
capabilities to students for free. Since our client is NAU faculty, it may be possible to
request even more resources than usual. Bandwidth and performance would generally
be fast and stable as it is mostly supported by NAU’s IT department. NAU offers Unix
and Windows web-hosting. Unix hosting has support for a MySQL client and database
with Apache 2 framework support. Windows hosting uses ASP.NET for framework
support but is limited to Oracle and Microsoft Access database support. Microsoft
Access and Oracle would require some time to learn as our team does not have much
experience with those databases.

Firebase:

Firebase is both a mobile and web-application hosting/development platform owned by
Google. Even a free account provides generous benefits: 1GB each for hosting data,
cloud storage data, and realtime database storage along with 5GB of regular storage.
Authentication and cloud services are also provided but Firebase bandwidth is limited to
10GB a month handled by Google Cloud. In addition, there isn’t much in the way of
framework support for Firebase; you must use Firebase web-hosting tools and the
Firebase Realtime Database. Both of these would require some team investment into
learning time especially since the Realtime database is not a SQL-like relational
database.

Chosen Approach
The chart below will establish a fundamental comparison between the three host
servers: Heroku, NAU servers, and Firebase.
1 = Poor
3 = Best

Heroku

NAU Servers

Firebase

Feature
Availability/Cost

Offers a variety of
supported features
(3)

Offers some, but
limited features
(2)

Offers good
features and
storage
(3)

15

Database
Compatibility

Mostly PostgreSQL
which one of our
team members
knows well
(3)

Unix: MySQL
Windows: Oracle +
Microsoft Access
(2)

Firebase Realtime
Database
(non-relational)
(1)

Learning
Curve/Difficulty

Our team is
experienced in
some of its
supported features
(3)

Requires learning
most of its
frameworks/DBs
besides MySQL
(2)

Requires learning
its unique database
and front-end tools
(2)

Framework
Compatibility

Good support for
some frameworks
but mostly Ruby
(2)

Forces usage of
Apache2 or
ASP.NET
(2)

Must learn to use
its custom
framework tools
(1)

Bandwidth/
Performance

Provides fast but
small 512 MB RAM
(2)

Good amount of
bandwidth/reliability
from NAU
(3)

Very generous
amounts of allotted
traffic/bandwidth
(3)

TOTALS: 13/15 11/15 10/15

Heroku appears to have the best balance of features and is what we’ve chosen as our
main hosting solution. It supports our chosen framework of Ruby, since Heroku has
many features that were built to work with Ruby. It also has seamless PostgreSQL
integration which won’t be too difficult to learn as our team is already familiar with
MySQL databases. This will be a problem if we need to use a database that isn’t
PostgreSQL. Heroku gives enough resources for us to test a small web portal as
necessary, however 512MB of RAM might require our project to be ported to a larger
hosting service. Should our hosting requirements change and we need more
resources/bandwidth, NAU’s servers will be the next best hosting service but will require
us to spend time fully learning its databases and frameworks.

Testing

One of our team members has experience with and has tested Heroku’s hosting service
with small sample sites and PostgreSQL data entries, so using this knowledge to host a
sample portal of our project on Heroku shouldn’t be too much of a step up. If we decide

16

we need to port our site to NAU’s servers, some of our team members already have
experience working with NAU’s framework tools to upload and manage sites, and will
likely be able to transfer them over after testing database entries and small web pages.

Technology Integration:

● We are planning on using Heroku to host the project, since it is free, has good
framework support, and is scalable.

● We are using Ruby On Rails to work with the backend development and
maintenance, and HTML/CSS/Javascript for frontend development.

● We may also use various frameworks, libraries, and Ruby gems along the way
where necessary.

17

Conclusion

This has been a Technological Feasibility Analysis of the JASS portal project to be built
by Team Jasper. We have analyzed the feasibility of our project requirements and have
determined them all to be fit for implementation without any major issues. We also
compared technologies and established the pros and cons of each, ultimately arriving at
a decision about what we plan to use. With Ruby on Rails for the back end for
commands to our PostgreSQL database, HTML, CSS and Javascript for the front-end,
and Heroku as the host, we are confident that this platform will work successfully to help
us carry out each of our project requirements. We have summarized our technological
challenges into a table with their description and how we plan to solve them with our
chosen technologies:

Challenge Solution Confidence
Level

Constructing a modular
database capable of
holding hundreds of
student profiles and other
data that can be easily
accessed in our project.

With PostgreSQL as our database, and
Ruby on Rails’ Active Record acting as
an easy way to interact with it, we will
use this combination due to it’s proven
functionality and easy set up, as well as
it’s helpful online support and
documentation.

High

Creating a virtual
classroom that matches
our client’s stylistic vision
and appears correctly
across multiple web
browsers. It also must
minimize confusion and
include a very friendly user
interface. Much thought
must be placed in the UX
as well.

We will use the most common front-end
technologies used by web browsers and
developers alike, HTML, CSS and
JavaScript. With these powerful
languages, there are extensive tutorials
and information available online that we
can use.

Moderate;
Additional
frameworks or
libraries may
need to be
used, i.e.
SASS

This project requires the
ability for a user or
administrator to safely and

Instead of writing our own code for this,
we will use a dependable ruby gem that
is safe to use and proven to work. This

High

18

securely create an
account, log on, update
their profile, and log out.
This part of the project can
result in a significant
security vulnerability if not
implemented correctly.

solution also saves a considerable
amount of time in this area of our
project since we are not manually
encoding and decoding a password
hash.

Overall, we are confident in our solutions, but we remain ready and adaptable to
whatever new challenges may arise along the way. Our team has tremendous coding
and problem-solving skills that we will utilize to the best of our abilities to ensure a
successful outcome in the development of a high-quality and impactful software.

19

